
CLEAVE

ExPECA Project Team

Sep 13, 2022

TABLE OF CONTENTS

1 CLEAVE - ControL bEnmArking serVice on the Edge 1
1.1 Installation . 1
1.2 Emulating a Networked Control System . 3
1.3 Contributing (WIP) . 10

2 Team 13

3 License 15
3.1 Indices and tables . 15

Python Module Index 35

Index 37

i

ii

CHAPTER

ONE

CLEAVE - CONTROL BENMARKING SERVICE ON THE EDGE

A framework for testing, benchmarking and evaluating control loop applications on the Edge, written in Python 3.8+.

Note: This project is in early stages of development.

CLEAVE is part of the ExPECA research project at KTH Royal Institute of Technology. It aims at providing a powerful
and flexible platform for the study of networked control systems, particularly on Edge Computing architectures.

1.1 Installation

1.1.1 Installation for general usage

NOTE: Although these instructions will eventually be the recommended way of downloading and installing
the framework, they are currently a work-in-progress, and do not work yet. For failsafe ways to install the
framework, see section Installation for development below.

From PyPI

1. Set up a Python virtualenv and activate it:

$ virtualenv --python=python3.8 ./venv
created virtual environment CPython3.8.3.final.0-64 in 212ms
$. ./venv/bin/activate
(venv) $

2. Next, install the framework from PyPI using pip:

(venv) $ pip install cleave

3. Alternatively, if you already have set up a project with an associated virtualenv, you can add cleave to your
requirements.txt :

example requirements.txt
...
numpy
pandas
cleave
scipy

(venv) $ pip install -Ur ./requirements.txt

1

https://www.jamesgross.org/research/expeca/
https://kth.se

CLEAVE

From the repository

1. Set up a virtualenv and activate it as before:

$ virtualenv --python=python3.8 ./venv
created virtual environment CPython3.8.3.final.0-64 in 212ms
$. ./venv/bin/activate
(venv) $

2. Install the package through pip by explicitly pointing it toward the repository:

(venv) $ pip install -U git+git://github.com/KTH-EXPECA/CLEAVE.git#egg=cleave

3. This can also be inserted into a requirements.txt file:

example requirements.txt
...
numpy
pandas
-e git://github.com/KTH-EXPECA/CLEAVE.git#egg=cleave
scipy

1.1.2 Installation for development

1. Clone the CLEAVE repository:

$ git clone git@github.com:KTH-EXPECA/CLEAVE.git
$ cd ./CLEAVE

2. Create a Python 3.8+ virtualenv and install the development dependencies:

$ virtualenv --python=python3.8 ./venv
created virtual environment CPython3.8.3.final.0-64 in 212ms
...

$. ./venv/bin/activate
(venv) $ pip install -Ur ./requirements.txt
...

(Optional) Set up the Sphinx documentation environment

1. Install the documentation dependencies:

(venv) $ pip install -Ur requirements_docs.txt

2. Document code using the Numpy docstring format (see below).

3. Generate reStructured text files for the code by running sphinx-apidocs from the top-level directory and pass-
ing it the output directory (docs/source) and the cleave package directory as arguments:

$ sphinx-apidoc -fo docs/source ./cleave

4. Finally, to preview what the documentation will look like when published on readthedocs, build it with GNU
Make:

2 Chapter 1. CLEAVE - ControL bEnmArking serVice on the Edge

https://cleave.readthedocs.io

CLEAVE

$ cd docs/
$ make html

The compiled HTML structure will be output to docs/build, from where it can be viewed in a browser.

1.2 Emulating a Networked Control System

Emulations of Networked Control Systems in CLEAVE are centered around two core concepts: Plants and Controller
Services. These terms follow the terminology used in Control Systems research: Plants are physical systems we wish
to control, whereas Controller Services are the computational elements which perform the necessary computations for
the controlling of Plants. CLEAVE provides an easy-to-use API to implement these components, and abstracts away
the network code, allowing researchers to focus on the NCS itself.

Fig. 1: General overview of CLEAVE’s design.

In practical terms, the definitions of Plants and Controller Services are done through configuration files written in pure
Python. These are then executed using the cleave.py launcher script. A couple of of such configuration files can
be found under the examples/ directory, and we will discuss them in more detail in Deploying the included NCS
emulations.

To execute a Plant, use the run-plant sub-command and provide a Plant configuration file:

(venv) $ python cleave.py run-plant examples/plant_config.py

To execute a Controller Service, use the run-controller subcommand and provide a Controller Service configuration
file.

(venv) $ python cleave.py run-controller examples/controller_config.py

Check cleave.py --help for more details and additional options. In particular, the -v|--verbose flag is very
useful; it increases the verbosity of the logged output, and can be specified multiple times. Examples:

(venv) $ python cleave.py run-plant examples/plant_config.py
...
(venv) $ python cleave.py -vv run-plant examples/plant_config.py
2020-11-25T18:50:22.908532+0100 WARNING /mnt/data/workspace/CLEAVE/plant_metrics/

(continues on next page)

1.2. Emulating a Networked Control System 3

CLEAVE

(continued from previous page)

→˓simulation.csv will be overwritten with new data.
2020-11-25T18:50:22.909054+0100 WARNING /mnt/data/workspace/CLEAVE/plant_metrics/client.
→˓csv will be overwritten with new data.
2020-11-25T18:50:22.909384+0100 WARNING /mnt/data/workspace/CLEAVE/plant_metrics/sensors.
→˓csv will be overwritten with new data.
2020-11-25T18:50:22.909749+0100 WARNING /mnt/data/workspace/CLEAVE/plant_metrics/
→˓actuators.csv will be overwritten with new data.
2020-11-25T18:50:22.910301+0100 WARNING Target frequency: 200 Hz
2020-11-25T18:50:22.910360+0100 WARNING Target time step: 5.0 ms
...

1.2.1 Deploying the included NCS emulations

CLEAVE comes with a number of pre-configured NCS emulations, composed of a Plant simulating an inverted pen-
dulum and a number of Controller Services that interact with this Plant and control the pendulum in different ways.

Inverted pendulum Plant

The examples/inverted_pendulum/plant/ directory contains the configuration files for the inverted pendulum
Plant. Currently, this directory contains two files: config.py and config_with_viz.py. These files define identical
Plant simulations, except for the fact that the latter includes a graphical visualization of the Plant in realtime.

Please refer to Configuring the Plant for details on customizing the Plant configurations, and to cleave.impl.
inverted_pendulum for the actual implementations of the Plants.

Inverted pendulum Controller Services

Controller Services for the inverted pendulum NCS can be found under examples/inverted_pendulum/
controller/. See each file for details on each Controller Service.

Please refer to Configuring the Controller Service for details on customizing the Controller Service configurations, and
to cleave.impl.inverted_pendulum for the actual implementations of the Controllers.

1.2.2 Building a NCS emulation from scratch

In the following sections we will explain how to set up NCS emulations in CLEAVE by developing and configuring
Plants and Controller Services from scratch and connecting them.

Plants

These are the representations of the physical systems wich we want to control. Plants in CLEAVE are usually physical
simulations of some system we wish to monitor and act upon. Correspondingly, a Plant is composed of three sub-
components:

• A State, which implements the discrete-time behavior of the simulated system.

• A collection of Sensor objects, which measure specific properties of the State, potentially transforming them,
and send them to the Controller Service.

• A collection of Actuator objects, which receive inputs from the Controller Service, potentially transform or
distort them, and finally act upon specific properties of the State.

4 Chapter 1. CLEAVE - ControL bEnmArking serVice on the Edge

CLEAVE

Fig. 2: General overview of the structure of, and flow of data in a Plant in CLEAVE.

State

State objects in CLEAVE are simply instances of classes which extend from the abstract base class cleave.api.
plant.State. This base class defines a single required method as well as two optional ones:

class State:
@abstractmethod
def advance(self, dt: float) -> None:

...

def initialize(self) -> None:
...

def shutdown(self) -> None:
...

The cleave.api.plant.State.advance()method must be extended by inheriting classes. It is called by the frame-
work on every iteration of the simulation, and thus users should implement their discrete-time plant logic here. The
parameter dt corresponds to the number of seconds elapsed since the last invocation of the method.

Methods cleave.api.plant.State.initialize() and cleave.api.plant.State.shutdown() can optionally
also be extended or overridden. They are called by the framework at the very beginning of the Plant execution and right
before shutdown, respectively. It is in these methods users should put their initialization and shutdown logic.

State objects also need to expose the properties which that will be provided as inputs to the Controller and the prop-
erties the Controller acts upon. This is done by defining special semantic variables in the constructor of the State:

• cleave.api.plant.SensorVariable objects represent properties that will be measured by sensors and sub-
sequently pushed to the Controller Service.

1.2. Emulating a Networked Control System 5

CLEAVE

• cleave.api.plant.ActuatorVariable objects represent properties that will be modified by the actuation
commands generated by the Controller Service. The values of these variables will be directly modified by the
framework as commands come in.

• cleave.api.plant.ControllerParameter objects represent parameters passed to the Controller Service at
the beginning of the emulation (WIP, not implemented yet).

These objects are simply used to track the values during execution, and thus are completely transparent, allowing
unrestricted access to the underlying raw values at all times. This means that after initialization, these variables can
simply be used as normal “raw” values without having to consider the semantic variable object around it.

Furthermore, an optional “sanity check” may be attached to each semantic variable. This simply corresponds to a
callable which receives the current value of the semantic variable and returns a boolean indicating if the current value
is within acceptable ranges or not. This check will be executed at each time step of the Plant simulation, and if it at any
point returns False the framework will record the corresponding variable and then halt the emulation.

An example skeleton of a State with a single input variable and a single output variable could then look something
like the following:

class ExampleState(State):
def __init__(self):

super(ExampleState, self).__init__()

self.accel = ActuatorVariable(0.0)
self.speed = SensorVariable(0.0, sanity_check=lambda s: s < 200.0)
shuts down if speed ever exceeds 200.0 m/s

def advance(self, dt: float) -> None:
To update the state, we simply read the ActuatorVariable, as it will always
hold the latest value from the controller at the beginning of each timestep,
and we write to the SensorVariable, as its value will automatically be sampled
by the corresponding Sensor.

self.speed += dt * self.accel

As mentioned in Deploying the included NCS emulations, more complex example implementations of State classes
representing Inverted Pendulum systems are included in the module cleave.impl.inverted_pendulum .

Sensors

Similarly to State, a Sensor in CLEAVE corresponds to an object instance of a subclass of cleave.api.plant.
Sensor implementing the required method cleave.api.plant.Sensor.process_sample(). The cleave.api.
util.PhyPropType typing variable in the signature simply represents the type of variables that can be measured in a
Plant, currently int, float, bool and bytes.

class Sensor:
def __init__(self, prop_name: str, sample_freq: int):

...

@abstractmethod
def process_sample(self, value: PhyPropType) -> PhyPropType:

...

As can be observed above, the Sensor base class constructor takes two parameters:

• prop_name: Corresponds to a string holding the name of the semantic variable the Sensor samples from.

6 Chapter 1. CLEAVE - ControL bEnmArking serVice on the Edge

CLEAVE

• sample_freq: An integer representing the sampling frequency of this Sensor in Hz.

Sensor objects in the framework can be conceptualized as attaching to a semantic variable defined in the State.
Whenever it is time for the Sensor to sample the value of this variable, process_sample(value) is called
with its latest value, and whatever is returned is passed on to the Controller Service. Thus, users should extend
process_sample(value) with any procedure to add noise or distortion to the measured variable they desire.

An example simple Sensor class which simply adds a bias to the measured value could be implemented as follows:

class BiasSensor(Sensor):
def __init__(self, bias: float, prop_name: str, sample_freq: int):

super(BiasSensor, self).__init__(prop_name, sample_freq)
self._bias = bias

def process_sample(self, value: PhyPropType) -> PhyPropType:
return value + self._bias

Actuators

Actuator objects follow a similar logic as Sensor objects, in the sense that they “attach” to a semantic variable in the
State and modify its value at each iteration following commands from the Controller Service.

In practical terms, Actuator objects correspond to instances of subclasses of cleave.api.plant.Actuator:

class Actuator:
def __init__(self, prop_name: str):

...

@abstractmethod
def set_value(self, desired_value: PhyPropType) -> None:

...

@abstractmethod
def get_actuation(self) -> PhyPropType:

...

Again, the prop_name parameter in the constructor corresponds to the name of the semantic variable the
Actuator attaches to. The cleave.api.plant.Actuator.set_value() and cleave.api.plant.Actuator.
get_actuation() methods correspond to the required methods users should implement:

• set_value(self, desired_value: PhyPropType) -> None will be called by the framework whenever
a new value for the actuated semantic variable is received from the Controller.

• get_actuation(self) -> PhyPropTypewill be called by the framework at the beginning of each simulation
time step.

Note that due to the fact that commands from the Controller Service are received asynchronously, there are no guar-
antees regarding the order in which set_value() and get_actuation() are called with respect to each other. In
fact, depending on the frequency of the plant simulation updates, the sensor sampling rates, network latency, and/or the
time the Controller takes to process each input, either of these methods may be called multiple repeated times before
the other. Users need to account for this when implementing new Actuator classes.

CLEAVE includes implementations for a number of different Actuator subclasses. For example, cleave.api.
plant.SimpleConstantActuator implements an Actuator which remembers the last value set by the Controller
Service and applies it on every simulation time step. This can be thought of as, for instance, an electrical motor main-
taining a specific RPM until explicitly changed:

1.2. Emulating a Networked Control System 7

CLEAVE

class SimpleConstantActuator(Actuator):
def __init__(self, initial_value: PhyPropType, prop_name: str):

super(SimpleConstantActuator, self).__init__(prop_name)
self._value = initial_value

def set_value(self, desired_value: PhyPropType) -> None:
self._value = desired_value

def get_actuation(self) -> PhyPropType:
return self._value

Configuring the Plant

As discussed before, setting up Plants in CLEAVE is done through the use of configuration files written in pure Python.
These configuration files may contain any valid Python code, be split up into multiple files, and even use external
libraries. The only requirement is that the following top-level variables are defined:

• host: String containing the IP address of the Controller Service.

• port: Integer representing the UDP port on which the Controller Service is listening.

• tick_rate: Integer representing the update frequency of the Plant in Hertz. In other words, this number repre-
sents the number of iterations per second of the discrete-time simulation involving the State.

• State: A variable pointing to a valid instance of a subclass of State.

• sensors: A collection (list, tuple, set, etc) of instances of subclasses of Sensor.

• actuators: A collection of instances of subclasses of Actuator.

• (Optional) output_dir: This string should contain a path to a directory where the output metrics of the Plant
will be written to (see Plant output files for details on the output files). If omitted, this variable defaults to
./plant_metrics/.

Putting together our examples from the previous subsections, an example configuration file for the simple dummy
ExampleState discussed previously would look something like the following:

Simulation of the Plant can then be initialized using the cleave.py launcher script:

(venv) $ python cleave.py run-plant dummy_plant_config.py
...

Plant output files

TODO

8 Chapter 1. CLEAVE - ControL bEnmArking serVice on the Edge

CLEAVE

Controller Services

As discussed previously, a Controller Service correspond to the element in the NCS emulation which implements the
necessary logic and computations to achieve the desired control of the Plant. In CLEAVE, Controller Services are
implemented as stateful microservices paired with a specific Plant that receive samples of the Plant State semantic
sensor variables over a UDP socket and return new values for the State semantic actuator variables over the same
socket. Controller Services currently have a single user-defined component: a Controller which implements the
control strategy.

Fig. 3: General overview of the structure of, and flow of data in a Controller Service in CLEAVE.

Controllers

In practical terms, Controller objects are instances of subclasses of cleave.api.controller.Controller:

class Controller:
@abstractmethod
def process(self, sensor_values: PhyPropMapping) -> PhyPropMapping:

...

As seen above, this abstract base class defines a single required cleave.api.controller.Controller.process()
method subclasses must implement. This method takes as argument a Mapping from sensor variable names to values,
as is invoked whenever a new sample is received from the Plant. In turn, it must return a Mapping of actuator variable
names to new values, which will subsequently be sent to the Plant.

Below we present an example Controller for our example Plant that operates on the speed and accel variables:

1.2. Emulating a Networked Control System 9

CLEAVE

Configuring the Controller Service

Controller Service config files work the same way as Plant config files, the only difference being in the required top-level
variables:

• port: Integer defining the UDP port on which the Controller Service listens.

• controller: Variable pointing to a valid Controller instance.

• (Optional) output_dir: This string should contain a path to a directory where the output metrics of the Con-
troller will be written to (see Controller output files for details on the output files). If omitted, this variable
defaults to ./controller_metrics/.

The full example configuration file for our dummy Controller Service would then be:

Use cleave.py launcher script together with the config file to start listening for samples:

(venv) $ python cleave.py run-controller dummy_controller_config.py
...

Controller output files

TODO

1.3 Contributing (WIP)

This section contains information on how to contribute to this project.

1.3.1 Code style and standards

When developing on this project, please configure your IDE to adhere to the following guidelines.

The code in this repository should be PEP8 coding style guide compliant, with one exception: maximum line length.
PEP8 specifies a maximum line length of 79 characters, a relic of a time where widescreen monitors didn’t exist. In
this project, we extend the maximum line length to 120 characters.

Furthermore, code documentation in this project should follow the Numpy docstring format as detailed here.

Finally, every Python module in this project should include an Apache License v2.0 statement at the top:

Copyright (c) 2020 KTH Royal Institute of Technology
#
Licensed under the Apache License, Version 2.0 (the 'License');
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an 'AS IS' BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

10 Chapter 1. CLEAVE - ControL bEnmArking serVice on the Edge

https://pep8.org/
https://pep8.org/#maximum-line-length
https://numpydoc.readthedocs.io/en/latest/format.html#docstring-standard

CLEAVE

1.3. Contributing (WIP) 11

CLEAVE

12 Chapter 1. CLEAVE - ControL bEnmArking serVice on the Edge

CHAPTER

TWO

TEAM

• Manuel Olguín Muñoz: PhD student in Networking for Cyberphysical Systems; lead developer and maintainer
for the CLEAVE project.

• Seyed Samie Mostafavi: PhD student in Networking for Cyberphysical Systems.

• Dr. James Gross: Professor in Networking for Cyberphysical Systems; PI for the ExPECA project.

13

https://olguin.se
https://www.kth.se/profile/ssmos
https://www.jamesgross.org/
https://www.jamesgross.org/research/expeca/

CLEAVE

14 Chapter 2. Team

CHAPTER

THREE

LICENSE

Copyright 2020 KTH Royal Institute of Technology

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this project except in compliance
with the License. A copy of the license is included in the LICENSE file.

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an
“AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under the License.

3.1 Indices and tables

• genindex

• modindex

• search

3.1.1 CLEAVE

cleave package

Subpackages

cleave.api package

Submodules

cleave.api.cli module

cleave.api.controller module

class cleave.api.controller.Controller

Bases: ABC

Base class for controllers, which defines a a simple interface that extending subclasses need to implement.

15

https://github.com/KTH-EXPECA/CLEAVE/blob/master/LICENSE

CLEAVE

abstract process(sensor_values: Mapping[str, Union[int, float, bool]])→ Mapping[str, Union[int, float,
bool]]

Processes samples and produces a control command.

Samples arrive in the form of a dictionary of mappings from sensor property name to measured value.
Actuator commands should be returned in the same fashion, in a dictionary of mappings from actuated
property name to actuated value.

This method needs to be implemented by extending subclasses with their respective logic.

Parameters
sensor_values – A mapping of sensor property names to measured values.

Returns
A mapping of actuated property names to desired values.

Return type
PhyPropMapping

cleave.api.plant module

exception cleave.api.plant.UnrecoverableState(prop_values: Mapping[str, Union[int, float, bool]])
Bases: Exception

class cleave.api.plant.ControllerParameter(value: Any, record: bool = False)
Bases: BaseSemanticVariable

Note: Parameter from plant to controller is not yet implemented.

A semantically significant variable corresponding to an initialization parameter for a controller interacting with
this plant.

Variables of this type will automatically be provided to the controller on initialization

Parameters

• value – The initial value for this variable.

• record – Whether this variable should be recorded or not (WIP) TODO: record variables

• sanity_check – A callable which takes a single input value and returns a boolean. If this
value is not None, the callable give will be invoked with the updated value of the semantic
variable after every tick of the plant. If the callable returns false, the simulation will fail with
an UnrecoverableState error.

class cleave.api.plant.SensorVariable(value: Any, record: bool = True, sanity_check:
Optional[Callable[[Any], bool]] = None)

Bases: BaseSemanticVariable

A semantically significant variable corresponding to a property measured by a sensor. Variables of this type will
automatically be paired with the corresponding Sensor during emulation.

Parameters

• value – The initial value for this variable.

• record – Whether this variable should be recorded or not (WIP) TODO: record variables

• sanity_check – A callable which takes a single input value and returns a boolean. If this
value is not None, the callable give will be invoked with the updated value of the semantic
variable after every tick of the plant. If the callable returns false, the simulation will fail with
an UnrecoverableState error.

16 Chapter 3. License

CLEAVE

class cleave.api.plant.ActuatorVariable(value: Any, record: bool = True, sanity_check:
Optional[Callable[[Any], bool]] = None)

Bases: BaseSemanticVariable

A semantically significant variable corresponding to a property measured by an actuator. Variables of this type
will automatically be paired with the corresponding Actuator during emulation.

Parameters

• value – The initial value for this variable.

• record – Whether this variable should be recorded or not (WIP) TODO: record variables

• sanity_check – A callable which takes a single input value and returns a boolean. If this
value is not None, the callable give will be invoked with the updated value of the semantic
variable after every tick of the plant. If the callable returns false, the simulation will fail with
an UnrecoverableState error.

class cleave.api.plant.State

Bases: StateBase, ABC

Abstract core class defining an interface for Plant state evolution over the course of a simulation. Implementing
classes need to extend the advance() method to implement their logic, as this method will be called by the plant
on each emulation time step.

abstract advance(delta_t: float)→ None
Called by the plant on every time step to advance the emulation. Needs to be implemented by subclasses.

Parameters
delta_t – Time elapsed since the previous call to this method. This value will be 0 the first
time this method is called.

initialize()→ None
Called by the plant at the beginning of the emulation.

shutdown()→ None
Called by the plant on shutdown.

class cleave.api.plant.Sensor(prop_name: str, sample_freq: int)
Bases: ABC

This class defines an interface for sensors attached to a simulated plant. Implementations should override the
process_sample() method with their logic.

Parameters

• prop_name – Name of the property this sensor measures.

• sample_freq – Sampling frequency of this sensor.

property measured_property_name: str

Returns
Name of the property monitored by this sensor.

Return type
str

property sampling_frequency: int

Returns
Sampling frequency of this sensor, expressed in Hertz.

3.1. Indices and tables 17

CLEAVE

Return type
int

abstract process_sample(value: Union[int, float, bool])→ Union[int, float, bool]
Processes the measured value. This method should be implemented by subclasses to include sensor-specific
behaviors.

Parameters
value – The latest measurement of the monitored property.

Returns
A possibly transformed value of the monitored property, according to the internal parameters
of this sensor.

Return type
PhyPropType

class cleave.api.plant.SimpleSensor(prop_name: str, sample_freq: int)
Bases: Sensor

Simplest implementation of a sensor, which performs no processing on the read value and returns it as-is.

Parameters

• prop_name – Name of the property this sensor measures.

• sample_freq – Sampling frequency of this sensor.

process_sample(value: Union[int, float, bool])→ Union[int, float, bool]
Processes the measured value. This method should be implemented by subclasses to include sensor-specific
behaviors.

Parameters
value – The latest measurement of the monitored property.

Returns
A possibly transformed value of the monitored property, according to the internal parameters
of this sensor.

Return type
PhyPropType

class cleave.api.plant.Actuator(prop_name: str)
Bases: ABC

Abstract core class for actuators. Implementations should override the set_value() and get_actuation() methods
with their logic.

Parameters
prop_name – Name of the property actuated upon by this actuator.

property actuated_property_name: str

Returns
Name of the property actuated upon by this actuator.

Return type
str

abstract set_value(desired_value: Union[int, float, bool])→ None
Called to set the target value for this actuator. This method should be implemented by extending classes.

18 Chapter 3. License

CLEAVE

Parameters
desired_value – Target value for this actuator.

abstract get_actuation()→ Union[int, float, bool]
Returns the next value for the actuation processed governed by this actuator. This method should be imple-
mented by extending classes.

Returns
A value for the actuated property.

Return type
PhyPropType

class cleave.api.plant.SimpleConstantActuator(initial_value: Union[int, float, bool], prop_name: str)
Bases: Actuator

Implementation of a perfect actuator which keeps its value after being read (i.e. can be thought of as applying a
constant force/actuation on the target variable).

Parameters
prop_name – Name of the property actuated upon by this actuator.

set_value(desired_value: Union[int, float, bool])→ None
Sets the value of the actuated property governed by this actuator.

Parameters
desired_value – The value of the actuated property.

get_actuation()→ Union[int, float, bool]

Returns
The current value of the actuated property.

Return type
PhyPropType

class cleave.api.plant.SimpleImpulseActuator(prop_name: str, default_value: Union[int, float, bool])
Bases: Actuator

Implementation if a perfect actuator which resets its value after being read (i.e. can be thought as an actuator
which applies impulses to the target variable).

Parameters
prop_name – Name of the property actuated upon by this actuator.

set_value(desired_value: Union[int, float, bool])→ None
Sets the next value returned by this actuator.

Parameters
desired_value – Value returned in the next call to get_actuation().

get_actuation()→ Union[int, float, bool]
Returns the internally stored value, and then resets it to the default value.

Returns
The actuation value.

Return type
PhyPropType

3.1. Indices and tables 19

CLEAVE

class cleave.api.plant.GaussianConstantActuator(prop_name: str, g_mean: float, g_std: float,
initial_value: Optional[Union[int, float, bool]] =
None, prealloc_size: int = 1000000)

Bases: SimpleConstantActuator

Implementation of an actuator with Gaussian noise in its output.

Parameters
prop_name – Name of the property actuated upon by this actuator.

set_value(desired_value: Union[int, float, bool])→ None
Sets the value of the actuated property governed by this actuator.

Parameters
desired_value – The value of the actuated property.

cleave.api.util module

cleave.api.util.PhyPropType

Type of properties that can be handled by sensors and actuators.

alias of Union[int, float, bool]

cleave.core package

Subpackages

cleave.core.client package

Submodules

cleave.core.client.actuator module

exception cleave.core.client.actuator.RegisteredActuatorWarning

Bases: Warning

exception cleave.core.client.actuator.UnregisteredPropertyWarning

Bases: Warning

class cleave.core.client.actuator.ActuatorArray(actuators: Collection[Actuator], control:
BaseControllerInterface)

Bases: Recordable

Internal utility class to manage a collection of Actuators attached to a Plant.

get_actuation_inputs()→ Mapping[str, Union[int, float, bool]]
Fetches raw commands from the controller, processes them and returns.

Returns
A mapping from actuated property names to output values from the corresponding actuators.

Return type
PhyPropMapping

20 Chapter 3. License

CLEAVE

cleave.core.client.control module

class cleave.core.client.control.BaseControllerInterface

Bases: ABC

Defines the core interface for interacting with controllers.

abstract put_sensor_values(prop_values: Mapping[str, Union[int, float, bool]])→ None
Send a sample of sensor values to the controller.

Parameters
prop_values – Mapping from property names to sensor values.

abstract get_actuator_values()→ Mapping[str, Union[int, float, bool]]
Waits for incoming data from the controller and returns a mapping from actuated property names to values.

Returns
Mapping from actuated property names to values.

Return type
Mapping

class cleave.core.client.control.DummyControllerInterface

Bases: BaseControllerInterface

put_sensor_values(prop_values: Mapping[str, Union[int, float, bool]])→ None
Send a sample of sensor values to the controller.

Parameters
prop_values – Mapping from property names to sensor values.

get_actuator_values()→ Mapping[str, Union[int, float, bool]]
Waits for incoming data from the controller and returns a mapping from actuated property names to values.

Returns
Mapping from actuated property names to values.

Return type
Mapping

cleave.core.client.physicalsim module

class cleave.core.client.physicalsim.PhysicalSimulation(state: State, tick_rate: int)
Bases: Recordable

advance_state(input_values: Mapping[str, Union[int, float, bool]])→ Mapping[str, Union[int, float, bool]]
Performs a single step update using the given actuation values as inputs and returns the updated values for
the sensed variables.

Parameters
input_values – Actuation inputs.

Returns
Mapping from sensed property names to values.

Return type
PhyPropMapping

3.1. Indices and tables 21

CLEAVE

cleave.core.client.plant module

class cleave.core.client.plant.Plant(tick_dt: float)
Bases: ABC

Interface for all plants.

class cleave.core.client.plant.BasePlant(physim: PhysicalSimulation, sensors: Collection[Sensor],
actuators: Collection[Actuator], control_interface:
BaseControllerInterface)

Bases: Plant

on_init()→ None
Sets up the simulation of this plant

tick(missed_count: int)→ None
Executes the emulation timestep. Intended use is inside a Twisted LoopingCall, hence why it takes a single
integer parameter which specifies the number of calls queued up in a time interval (should be 1).

Parameters
missed_count –

on_shutdown()→ None
Called on shutdown of the plant.

class cleave.core.client.plant.CSVRecordingPlant(physim: PhysicalSimulation, sensors:
Collection[Sensor], actuators: Collection[Actuator],
control_interface: BaseControllerInterface,
recording_output_dir: Path = PosixPath('.'))

Bases: BasePlant

Plant with built-in CSV recording capabilities of metrics from the the physical properties and the network con-
nection.

on_init()→ None
Sets up the simulation of this plant

on_shutdown()→ None
Called on shutdown of the plant.

cleave.core.client.sensor module

class cleave.core.client.sensor.SensorArray(plant_tick_rate: int, sensors: Collection[Sensor], control:
BaseControllerInterface)

Bases: Recordable

Internal utility class to manage a collection of Sensors attached to a Plant.

process_and_send_samples(prop_values: Mapping[str, Union[int, float, bool]])→ None
Processes measured properties by passing them to the internal collection of sensors and returns the pro-
cessed values.

Parameters
prop_values – Dictionary containing mappings from property names to measured values.

Returns
A dictionary containing mappings from property names to processed sensor values.

22 Chapter 3. License

CLEAVE

Return type
Dict

exception cleave.core.client.sensor.IncompatibleFrequenciesError

Bases: Exception

exception cleave.core.client.sensor.MissingPropertyError

Bases: Exception

cleave.core.client.statebase module

class cleave.core.client.statebase.BaseSemanticVariable(value: Any, record: bool = True,
sanity_check: Optional[Callable[[Any],
bool]] = None)

Bases: SupportsFloat, SupportsInt, SupportsBytes, ABC

Base class for semantically significant variables in a State.

Parameters

• value – The initial value for this variable.

• record – Whether this variable should be recorded or not (WIP) TODO: record variables

• sanity_check – A callable which takes a single input value and returns a boolean. If this
value is not None, the callable give will be invoked with the updated value of the semantic
variable after every tick of the plant. If the callable returns false, the simulation will fail with
an UnrecoverableState error.

class cleave.core.client.statebase.StateBase

Bases: ABC

Defines the underlying structure for the State interface without having to resort to hacks.

final get_sensed_prop_names()→ Set[str]

Returns
Set containing the identifiers of the sensed variables.

Return type
Set

final get_actuated_prop_names()→ Set[str]

Returns
Set containing the identifiers of the actuated variables.

Return type
Set

final get_record_variables()→ Mapping[str, Union[int, float, bool]]

Returns
A mapping containing the values of the recorded variables in this state.

Return type
PhyPropMapping

3.1. Indices and tables 23

CLEAVE

final get_controller_parameters()→ Mapping[str, Union[int, float, bool]]

Returns
A mapping from strings to values containing the initialization parameters for the controller
associated with this physical simulation.

Return type
PhyPropMapping

final check_semantic_sanity()→ Dict[str, Any]
Checks that the semantic variables in this state have acceptable values.

Returns
Returns a mapping containing the properties for which the check failed and their associated
values.

Return type
Dict[str, Any]

cleave.core.client.timing module

class cleave.core.client.timing.TimingResult(start, end, duration, results)
Bases: tuple

Create new instance of TimingResult(start, end, duration, results)

start: float

Alias for field number 0

end: float

Alias for field number 1

duration: float

Alias for field number 2

results: Any

Alias for field number 3

class cleave.core.client.timing.SimClock

Bases: object

This class provides consistent simulation timing measurements.

get_sim_time()→ float

Returns
A float representing the elapsed time in seconds since the initialization of this clock.

Return type
float

get_adjusted_realtime()→ float

Returns
A float representing the elapsed time since the UNIX Epoch, adjusted for monotonicity.

Return type
float

24 Chapter 3. License

CLEAVE

time_subroutine(fn: Callable[[Any], Any], *args, **kwargs)→ TimingResult
Times the execution of a function with respect to this clock.

Parameters

• fn – Function to be timed.

• args – Args to pass to the timed function.

• kwargs – Kwargs to pass to the timed function.

Returns
A TimingResult object containing the start and end timestamps of the function call, the dura-
tion of the function call in seconds and the results of the call.

Return type
TimingResult

class cleave.core.client.timing.Rate(tick_count, interval_s)
Bases: tuple

Create new instance of Rate(tick_count, interval_s)

tick_count: int

Alias for field number 0

interval_s: float

Alias for field number 1

class cleave.core.client.timing.SimTicker

Bases: object

Utility class to measure the rate of the plant and provide time deltas between ticks.

cleave.core.network package

Submodules

cleave.core.network.backend module

exception cleave.core.network.backend.BusyControllerException

Bases: Exception

class cleave.core.network.backend.BaseControllerService(controller: Controller, add_delay_s: float
= 0.0)

Bases: Recordable, ABC

class cleave.core.network.backend.UDPControllerService(controller: Controller, output_dir: Path,
add_delay_s: float = 0.0)

Bases: BaseControllerService, DatagramProtocol

UDP implementation of a controller service. Receives sensor samples over UDP and pushes them to the controller
for processing.

startProtocol()→ None
Called when a transport is connected to this protocol.

Will only be called once, even if multiple ports are connected.

3.1. Indices and tables 25

CLEAVE

stopProtocol()→ None
Executed during shutdown.

datagramReceived(in_dgram: bytes, addr: Tuple[str, int])
Executed on each datagram received.

cleave.core.network.client module

class cleave.core.network.client.RecordingUDPControlClient(controller_addr: Tuple[str, int],
output_dir: Path)

Bases: DatagramProtocol, ABC

startProtocol()

Called when a transport is connected to this protocol.

Will only be called once, even if multiple ports are connected.

stopProtocol()

Called when the transport is disconnected.

Will only be called once, after all ports are disconnected.

datagramReceived(datagram: bytes, addr: Tuple[str, int])
Called when a datagram is received.

@param datagram: the bytes received from the transport. @param addr: tuple of source of datagram.

cleave.core.network.protocol module

class cleave.core.network.protocol.ControlMsgType(value)
Bases: Enum

An enumeration.

class cleave.core.network.protocol.ControlMessage(msg_type: 'ControlMsgType', seq: 'int', timestamp:
'float', payload: 'Any')

Bases: ABC

exception cleave.core.network.protocol.NoMessage

Bases: Exception

Submodules

cleave.core.config module

exception cleave.core.config.ConfigError

Bases: Exception

class cleave.core.config.Config(config: Mapping[str, Any], defaults: Mapping[str, Any] = {})
Bases: object

Helper class to hold configuration variables with optional default values.

26 Chapter 3. License

CLEAVE

get_parameter(k: str)→ Any
Looks up and returns a named parameter from the configuration. If the parameter is not defined and not
required, this will returned its default value instead.

Parameters
k – Parameter name.

Returns
The parameter value if defined. If the parameter is not defined but optional, this value will
correspond to the parameter’s default value.

Return type
Any

Raises
ConfigError – If the parameter is required and has not been defined.

class cleave.core.config.ConfigFile(config_path: str, cmd_line_overrides: Mapping[str, Any] = {},
defaults: Mapping[str, Any] = {})

Bases: Config

Helper class to wrap access to a config.py file containing configuration variables for the program.

Parameters

• config_path – Path to the config script.

• cmd_line_overrides – Overrides for config variables obtained from the command line.
Config parameters defined here will always override the config file.

• defaults – Mapping of fallback values for missing parameters.

cleave.core.logging module

class cleave.core.logging.Logger(namespace: ~typing.Optional[str] = None, source:
~typing.Optional[object] = None, observer:
~typing.Optional[<InterfaceClass
twisted.logger._interfaces.ILogObserver>] = None)

Bases: object

A L{Logger} emits log messages to an observer. You should instantiate it as a class or module attribute, as
documented in L{this module’s documentation <twisted.logger>}.

@ivar namespace: the namespace for this logger @ivar source: The object which is emitting events via this
logger @ivar observer: The observer that this logger will send events to.

@param namespace: The namespace for this logger. Uses a dotted
notation, as used by python modules. If not L{None}, then the name of the module of the caller is used.

@param source: The object which is emitting events via this
logger; this is automatically set on instances of a class if this L{Logger} is an attribute of that class.

@param observer: The observer that this logger will send events to.
If L{None}, use the L{global log publisher <globalLogPublisher>}.

emit(level: LogLevel, format: Optional[str] = None, **kwargs: object)→ None
Emit a log event to all log observers at the given level.

@param level: a L{LogLevel} @param format: a message format using new-style (PEP 3101)

formatting. The logging event (which is a L{dict}) is used to render this format string.

3.1. Indices and tables 27

CLEAVE

@param kwargs: additional key/value pairs to include in the event.
Note that values which are later mutated may result in non-deterministic behavior from observers that
schedule work for later execution.

failure(format: str, failure: ~typing.Optional[~twisted.python.failure.Failure] = None, level:
~twisted.logger._levels.LogLevel = <LogLevel=critical>, **kwargs: object)→ None

Log a failure and emit a traceback.

For example:

try:
frob(knob)

except Exception:
log.failure("While frobbing {knob}", knob=knob)

or:

d = deferredFrob(knob)
d.addErrback(lambda f: log.failure("While frobbing {knob}",

f, knob=knob))

This method is generally meant to capture unexpected exceptions in code; an exception that is caught and
handled somehow should be logged, if appropriate, via L{Logger.error} instead. If some unknown ex-
ception occurs and your code doesn’t know how to handle it, as in the above example, then this method
provides a means to describe the failure in nerd-speak. This is done at L{LogLevel.critical} by default,
since no corrective guidance can be offered to an user/administrator, and the impact of the condition is
unknown.

@param format: a message format using new-style (PEP 3101) formatting.
The logging event (which is a L{dict}) is used to render this format string.

@param failure: a L{Failure} to log. If L{None}, a L{Failure} is
created from the exception in flight.

@param level: a L{LogLevel} to use. @param kwargs: additional key/value pairs to include in the event.

Note that values which are later mutated may result in non-deterministic behavior from observers
that schedule work for later execution.

debug(format: Optional[str] = None, **kwargs: object)→ None
Emit a log event at log level L{LogLevel.debug}.

@param format: a message format using new-style (PEP 3101) formatting.
The logging event (which is a L{dict}) is used to render this format string.

@param kwargs: additional key/value pairs to include in the event.
Note that values which are later mutated may result in non-deterministic behavior from observers that
schedule work for later execution.

info(format: Optional[str] = None, **kwargs: object)→ None
Emit a log event at log level L{LogLevel.info}.

@param format: a message format using new-style (PEP 3101) formatting.
The logging event (which is a L{dict}) is used to render this format string.

@param kwargs: additional key/value pairs to include in the event.
Note that values which are later mutated may result in non-deterministic behavior from observers that
schedule work for later execution.

28 Chapter 3. License

CLEAVE

warn(format: Optional[str] = None, **kwargs: object)→ None
Emit a log event at log level L{LogLevel.warn}.

@param format: a message format using new-style (PEP 3101) formatting.
The logging event (which is a L{dict}) is used to render this format string.

@param kwargs: additional key/value pairs to include in the event.
Note that values which are later mutated may result in non-deterministic behavior from observers that
schedule work for later execution.

error(format: Optional[str] = None, **kwargs: object)→ None
Emit a log event at log level L{LogLevel.error}.

@param format: a message format using new-style (PEP 3101) formatting.
The logging event (which is a L{dict}) is used to render this format string.

@param kwargs: additional key/value pairs to include in the event.
Note that values which are later mutated may result in non-deterministic behavior from observers that
schedule work for later execution.

critical(format: Optional[str] = None, **kwargs: object)→ None
Emit a log event at log level L{LogLevel.critical}.

@param format: a message format using new-style (PEP 3101) formatting.
The logging event (which is a L{dict}) is used to render this format string.

@param kwargs: additional key/value pairs to include in the event.
Note that values which are later mutated may result in non-deterministic behavior from observers that
schedule work for later execution.

class cleave.core.logging.LogLevel

Bases: Names

Constants describing log levels.

@cvar debug: Debugging events: Information of use to a developer of the
software, not generally of interest to someone running the software unless they are attempting to diagnose
a software issue.

@cvar info: Informational events: Routine information about the status of
an application, such as incoming connections, startup of a subsystem, etc.

@cvar warn: Warning events: Events that may require greater attention than
informational events but are not a systemic failure condition, such as authorization failures, bad data from
a network client, etc. Such events are of potential interest to system administrators, and should ideally
be phrased in such a way, or documented, so as to indicate an action that an administrator might take to
mitigate the warning.

@cvar error: Error conditions: Events indicating a systemic failure, such
as programming errors in the form of unhandled exceptions, loss of connectivity to an external system with-
out which no useful work can proceed, such as a database or API endpoint, or resource exhaustion. Similarly
to warnings, errors that are related to operational parameters may be actionable to system administrators
and should provide references to resources which an administrator might use to resolve them.

@cvar critical: Critical failures: Errors indicating systemic failure (ie.
service outage), data corruption, imminent data loss, etc. which must be handled immediately. This in-
cludes errors unanticipated by the software, such as unhandled exceptions, wherein the cause and conse-
quences are unknown.

Classes representing constants containers are not intended to be instantiated.

The class object itself is used directly.

3.1. Indices and tables 29

CLEAVE

classmethod levelWithName(name: str)→ NamedConstant
Get the log level with the given name.

@param name: The name of a log level.

@return: The L{LogLevel} with the specified C{name}.

@raise InvalidLogLevelError: if the C{name} does not name a valid log
level.

cleave.core.recordable module

class cleave.core.recordable.Recorder(recordable: Recordable)
Bases: ABC

Interface for Recorder objects. Recorder and Recordable objects together implement the Observable pattern for
text records of the plant state.

abstract notify(latest_record: NamedTuple)
Notify this recorder of the latest record generated by a recordable it is monitoring.

initialize()

Called on plant startup.

shutdown()

Called on plant shutdown.

flush()

Mainly intended for IO-backed recorders, to force flushing of any potentially memory-stored data.

class cleave.core.recordable.Recordable

Bases: ABC

Interface for Recordable objects. Recorder and Recordable objects together implement the Observable pattern
for text records of the plant state.

class cleave.core.recordable.NamedRecordable(name: str, record_fields: Sequence[str],
opt_record_fields: Mapping[str, Any] = {})

Bases: Recordable

A base implementation of a named recordable object.

class cleave.core.recordable.CSVRecorder(recordable: Recordable, output_dir: Path, metric_name: str,
chunk_size: int = 1000)

Bases: Recorder

Implementation of a CSV-file backed Recorder.

initialize()→ None
Called on plant startup.

flush()→ None
Flushes the internal record buffer to the backing CSV file.

notify(latest_record: NamedTuple)→ None
Notify this recorder of the latest record generated by a recordable it is monitoring.

shutdown()→ None
Called on plant shutdown.

30 Chapter 3. License

CLEAVE

cleave.core.util module

class cleave.core.util.SingleElementQ

Bases: object

Utility class to hold a single variable in a thread-safe manner. Subsequent calls to put() without calling pop()
will overwrite the stored variable. Conversely, pop() always returns the LATEST value for the stored variable.

put(value: Any)→ None
Thread-safely store a value. Overwrites any previously stored value.

Parameters
value – The value to store in this container.

pop(timeout: Optional[float] = None)→ Any
Pop the latest value for the stored variable. If timeout is None (the default), block until a value is available.
Otherwise, block for up to timeout seconds, after which an Empty exception is raised if no value was made
available within that time.

Parameters
timeout – Number of seconds to block for. If None, blocks indefinitely.

Returns
The stored value.

Return type
Any

Raises
Empty – If timeout is not None and no value is available when it runs out.

pop_nowait()→ Any
Pops the latest value for the stored variable without waiting. If no value has been set yet, raises an Empty
exception.

Returns
Latest value for the stored variable.

Return type
Any

Raises
Empty – If no value for the stored variable exists.

cleave.impl package

Submodules

cleave.impl.inverted_pendulum module

cleave.impl.inverted_pendulum.G_CONST = Vec2d(0, -9.8)

Gravity constants

cleave.impl.inverted_pendulum.visualization_loop(input_q: Queue, shutdown_event: Event, window_w:
int, window_h: int, caption: str, ppm: float = 200.0)
→ None

3.1. Indices and tables 31

CLEAVE

Utility function that executes a Pyglet GUI loop to graphically visualize the inverted pendulum. Should always
be called from a separate Process.

Parameters

• input_q – Input queue which holds dictionaries describing the figures to be drawn on screen.

• shutdown_event – Event to signal a shutdown of the Plant.

• window_w – Window width.

• window_h – Window height.

• caption – Window caption.

• ppm – Factor relating number of pixels per meter.

class cleave.impl.inverted_pendulum.InvPendulumState(fail_angle_rad: float = 0.34, ground_friction:
float = 0.1, cart_mass: float = 0.5, cart_dims:
Vec2d = Vec2d(0.3, 0.2), pend_length: float =
1.2, pend_mass: float = 0.2, pend_moment:
float = 0.001)

Bases: State

Implementation of a discrete-time simulation of an inverted pendulum.

Parameters

• fail_angle_rad – Angle at which the pendulum is considered unrecoverable. Negative
values disable this check.

• ground_friction – Friction factor to apply for the ground.

• cart_mass – Mass of the pendulum cart in Kg.

• cart_dims – Dimensions of the cart in meters.

• pend_length – Length of the pendulum arm.

• pend_mass – Mass of the pendulum in Kg.

• pend_moment – Moment of the pendulum.

advance(delta_t: float)→ None
Called by the plant on every time step to advance the emulation. Needs to be implemented by subclasses.

Parameters
delta_t – Time elapsed since the previous call to this method. This value will be 0 the first
time this method is called.

class cleave.impl.inverted_pendulum.InvPendulumStateWithViz(fail_angle_rad: float = 0.34,
ground_friction: float = 0.1,
cart_mass: float = 0.5, cart_dims:
Vec2d = Vec2d(0.3, 0.2), pend_length:
float = 1.2, pend_mass: float = 0.2,
pend_moment: float = 0.001,
window_w: int = 1000, window_h: int
= 700, caption: str = 'Inverted
Pendulum Simulation', ppm: float =
200.0)

Bases: InvPendulumState

32 Chapter 3. License

CLEAVE

Implementation of a discrete-time simulation of an inverted pendulum, with a graphical visualization using Py-
glet.

Parameters

• fail_angle_rad – Angle at which the pendulum is considered unrecoverable. Negative
values disable this check.

• ground_friction – Friction factor to apply for the ground.

• cart_mass – Mass of the pendulum cart in Kg.

• cart_dims – Dimensions of the cart in meters.

• pend_length – Length of the pendulum arm.

• pend_mass – Mass of the pendulum in Kg.

• pend_moment – Moment of the pendulum.

initialize()→ None
Called by the plant at the beginning of the emulation.

shutdown()→ None
Called by the plant on shutdown.

advance(delta_t: float)→ None
Called by the plant on every time step to advance the emulation. Needs to be implemented by subclasses.

Parameters
delta_t – Time elapsed since the previous call to this method. This value will be 0 the first
time this method is called.

class cleave.impl.inverted_pendulum.InvPendulumController(ref: float = 0.0, max_force: float = 25)
Bases: Controller

Proportional-differential controller for the Inverted Pendulum.

Parameters

• ref – Position on the X-axis around which to balance the pendulum.

• max_force – Maximum force, in Newtons, allowed to apply to the pendulum.

K = [-57.38901804, -36.24133932, 118.51380879, 28.97241832]

Pendulum parameters

process(sensor_values: Mapping[str, Union[int, float, bool]])→ Mapping[str, Union[int, float, bool]]
Processes samples and produces a control command.

Samples arrive in the form of a dictionary of mappings from sensor property name to measured value.
Actuator commands should be returned in the same fashion, in a dictionary of mappings from actuated
property name to actuated value.

This method needs to be implemented by extending subclasses with their respective logic.

Parameters
sensor_values – A mapping of sensor property names to measured values.

Returns
A mapping of actuated property names to desired values.

Return type
PhyPropMapping

3.1. Indices and tables 33

CLEAVE

34 Chapter 3. License

PYTHON MODULE INDEX

c
cleave, 15
cleave.api, 15
cleave.api.cli, 15
cleave.api.controller, 15
cleave.api.plant, 16
cleave.api.util, 20
cleave.core, 20
cleave.core.client, 20
cleave.core.client.actuator, 20
cleave.core.client.control, 21
cleave.core.client.physicalsim, 21
cleave.core.client.plant, 22
cleave.core.client.sensor, 22
cleave.core.client.statebase, 23
cleave.core.client.timing, 24
cleave.core.config, 26
cleave.core.logging, 27
cleave.core.network, 25
cleave.core.network.backend, 25
cleave.core.network.client, 26
cleave.core.network.protocol, 26
cleave.core.recordable, 30
cleave.core.util, 31
cleave.impl, 31
cleave.impl.inverted_pendulum, 31

35

CLEAVE

36 Python Module Index

INDEX

A
actuated_property_name (cleave.api.plant.Actuator

property), 18
Actuator (class in cleave.api.plant), 18
ActuatorArray (class in cleave.core.client.actuator), 20
ActuatorVariable (class in cleave.api.plant), 16
advance() (cleave.api.plant.State method), 17
advance() (cleave.impl.inverted_pendulum.InvPendulumState

method), 32
advance() (cleave.impl.inverted_pendulum.InvPendulumStateWithViz

method), 33
advance_state() (cleave.core.client.physicalsim.PhysicalSimulation

method), 21

B
BaseControllerInterface (class in

cleave.core.client.control), 21
BaseControllerService (class in

cleave.core.network.backend), 25
BasePlant (class in cleave.core.client.plant), 22
BaseSemanticVariable (class in

cleave.core.client.statebase), 23
BusyControllerException, 25

C
check_semantic_sanity()

(cleave.core.client.statebase.StateBase
method), 24

cleave
module, 15

cleave.api
module, 15

cleave.api.cli
module, 15

cleave.api.controller
module, 15

cleave.api.plant
module, 16

cleave.api.util
module, 20

cleave.core
module, 20

cleave.core.client
module, 20

cleave.core.client.actuator
module, 20

cleave.core.client.control
module, 21

cleave.core.client.physicalsim
module, 21

cleave.core.client.plant
module, 22

cleave.core.client.sensor
module, 22

cleave.core.client.statebase
module, 23

cleave.core.client.timing
module, 24

cleave.core.config
module, 26

cleave.core.logging
module, 27

cleave.core.network
module, 25

cleave.core.network.backend
module, 25

cleave.core.network.client
module, 26

cleave.core.network.protocol
module, 26

cleave.core.recordable
module, 30

cleave.core.util
module, 31

cleave.impl
module, 31

cleave.impl.inverted_pendulum
module, 31

Config (class in cleave.core.config), 26
ConfigError, 26
ConfigFile (class in cleave.core.config), 27
Controller (class in cleave.api.controller), 15
ControllerParameter (class in cleave.api.plant), 16
ControlMessage (class in

37

CLEAVE

cleave.core.network.protocol), 26
ControlMsgType (class in

cleave.core.network.protocol), 26
critical() (cleave.core.logging.Logger method), 29
CSVRecorder (class in cleave.core.recordable), 30
CSVRecordingPlant (class in cleave.core.client.plant),

22

D
datagramReceived() (cleave.core.network.backend.UDPControllerService

method), 26
datagramReceived() (cleave.core.network.client.RecordingUDPControlClient

method), 26
debug() (cleave.core.logging.Logger method), 28
DummyControllerInterface (class in

cleave.core.client.control), 21
duration (cleave.core.client.timing.TimingResult

attribute), 24

E
emit() (cleave.core.logging.Logger method), 27
end (cleave.core.client.timing.TimingResult attribute), 24
error() (cleave.core.logging.Logger method), 29

F
failure() (cleave.core.logging.Logger method), 28
flush() (cleave.core.recordable.CSVRecorder method),

30
flush() (cleave.core.recordable.Recorder method), 30

G
G_CONST (in module cleave.impl.inverted_pendulum), 31
GaussianConstantActuator (class in

cleave.api.plant), 19
get_actuated_prop_names()

(cleave.core.client.statebase.StateBase
method), 23

get_actuation() (cleave.api.plant.Actuator method),
19

get_actuation() (cleave.api.plant.SimpleConstantActuator
method), 19

get_actuation() (cleave.api.plant.SimpleImpulseActuator
method), 19

get_actuation_inputs()
(cleave.core.client.actuator.ActuatorArray
method), 20

get_actuator_values()
(cleave.core.client.control.BaseControllerInterface
method), 21

get_actuator_values()
(cleave.core.client.control.DummyControllerInterface
method), 21

get_adjusted_realtime()
(cleave.core.client.timing.SimClock method),
24

get_controller_parameters()
(cleave.core.client.statebase.StateBase
method), 23

get_parameter() (cleave.core.config.Config method),
26

get_record_variables()
(cleave.core.client.statebase.StateBase
method), 23

get_sensed_prop_names()
(cleave.core.client.statebase.StateBase
method), 23

get_sim_time() (cleave.core.client.timing.SimClock
method), 24

I
IncompatibleFrequenciesError, 23
info() (cleave.core.logging.Logger method), 28
initialize() (cleave.api.plant.State method), 17
initialize() (cleave.core.recordable.CSVRecorder

method), 30
initialize() (cleave.core.recordable.Recorder

method), 30
initialize() (cleave.impl.inverted_pendulum.InvPendulumStateWithViz

method), 33
interval_s (cleave.core.client.timing.Rate attribute), 25
InvPendulumController (class in

cleave.impl.inverted_pendulum), 33
InvPendulumState (class in

cleave.impl.inverted_pendulum), 32
InvPendulumStateWithViz (class in

cleave.impl.inverted_pendulum), 32

K
K (cleave.impl.inverted_pendulum.InvPendulumController

attribute), 33

L
levelWithName() (cleave.core.logging.LogLevel class

method), 29
Logger (class in cleave.core.logging), 27
LogLevel (class in cleave.core.logging), 29

M
measured_property_name (cleave.api.plant.Sensor

property), 17
MissingPropertyError, 23
module

cleave, 15
cleave.api, 15
cleave.api.cli, 15

38 Index

CLEAVE

cleave.api.controller, 15
cleave.api.plant, 16
cleave.api.util, 20
cleave.core, 20
cleave.core.client, 20
cleave.core.client.actuator, 20
cleave.core.client.control, 21
cleave.core.client.physicalsim, 21
cleave.core.client.plant, 22
cleave.core.client.sensor, 22
cleave.core.client.statebase, 23
cleave.core.client.timing, 24
cleave.core.config, 26
cleave.core.logging, 27
cleave.core.network, 25
cleave.core.network.backend, 25
cleave.core.network.client, 26
cleave.core.network.protocol, 26
cleave.core.recordable, 30
cleave.core.util, 31
cleave.impl, 31
cleave.impl.inverted_pendulum, 31

N
NamedRecordable (class in cleave.core.recordable), 30
NoMessage, 26
notify() (cleave.core.recordable.CSVRecorder

method), 30
notify() (cleave.core.recordable.Recorder method), 30

O
on_init() (cleave.core.client.plant.BasePlant method),

22
on_init() (cleave.core.client.plant.CSVRecordingPlant

method), 22
on_shutdown() (cleave.core.client.plant.BasePlant

method), 22
on_shutdown() (cleave.core.client.plant.CSVRecordingPlant

method), 22

P
PhyPropType (in module cleave.api.util), 20
PhysicalSimulation (class in

cleave.core.client.physicalsim), 21
Plant (class in cleave.core.client.plant), 22
pop() (cleave.core.util.SingleElementQ method), 31
pop_nowait() (cleave.core.util.SingleElementQ

method), 31
process() (cleave.api.controller.Controller method), 15
process() (cleave.impl.inverted_pendulum.InvPendulumController

method), 33
process_and_send_samples()

(cleave.core.client.sensor.SensorArray
method), 22

process_sample() (cleave.api.plant.Sensor method),
18

process_sample() (cleave.api.plant.SimpleSensor
method), 18

put() (cleave.core.util.SingleElementQ method), 31
put_sensor_values()

(cleave.core.client.control.BaseControllerInterface
method), 21

put_sensor_values()
(cleave.core.client.control.DummyControllerInterface
method), 21

R
Rate (class in cleave.core.client.timing), 25
Recordable (class in cleave.core.recordable), 30
Recorder (class in cleave.core.recordable), 30
RecordingUDPControlClient (class in

cleave.core.network.client), 26
RegisteredActuatorWarning, 20
results (cleave.core.client.timing.TimingResult at-

tribute), 24

S
sampling_frequency (cleave.api.plant.Sensor prop-

erty), 17
Sensor (class in cleave.api.plant), 17
SensorArray (class in cleave.core.client.sensor), 22
SensorVariable (class in cleave.api.plant), 16
set_value() (cleave.api.plant.Actuator method), 18
set_value() (cleave.api.plant.GaussianConstantActuator

method), 20
set_value() (cleave.api.plant.SimpleConstantActuator

method), 19
set_value() (cleave.api.plant.SimpleImpulseActuator

method), 19
shutdown() (cleave.api.plant.State method), 17
shutdown() (cleave.core.recordable.CSVRecorder

method), 30
shutdown() (cleave.core.recordable.Recorder method),

30
shutdown() (cleave.impl.inverted_pendulum.InvPendulumStateWithViz

method), 33
SimClock (class in cleave.core.client.timing), 24
SimpleConstantActuator (class in cleave.api.plant),

19
SimpleImpulseActuator (class in cleave.api.plant), 19
SimpleSensor (class in cleave.api.plant), 18
SimTicker (class in cleave.core.client.timing), 25
SingleElementQ (class in cleave.core.util), 31
start (cleave.core.client.timing.TimingResult attribute),

24
startProtocol() (cleave.core.network.backend.UDPControllerService

method), 25

Index 39

CLEAVE

startProtocol() (cleave.core.network.client.RecordingUDPControlClient
method), 26

State (class in cleave.api.plant), 17
StateBase (class in cleave.core.client.statebase), 23
stopProtocol() (cleave.core.network.backend.UDPControllerService

method), 25
stopProtocol() (cleave.core.network.client.RecordingUDPControlClient

method), 26

T
tick() (cleave.core.client.plant.BasePlant method), 22
tick_count (cleave.core.client.timing.Rate attribute), 25
time_subroutine() (cleave.core.client.timing.SimClock

method), 24
TimingResult (class in cleave.core.client.timing), 24

U
UDPControllerService (class in

cleave.core.network.backend), 25
UnrecoverableState, 16
UnregisteredPropertyWarning, 20

V
visualization_loop() (in module

cleave.impl.inverted_pendulum), 31

W
warn() (cleave.core.logging.Logger method), 28

40 Index

	CLEAVE - ControL bEnmArking serVice on the Edge
	Installation
	Installation for general usage
	From PyPI
	From the repository

	Installation for development
	(Optional) Set up the Sphinx documentation environment

	Emulating a Networked Control System
	Deploying the included NCS emulations
	Inverted pendulum Plant
	Inverted pendulum Controller Services

	Building a NCS emulation from scratch
	Plants
	State
	Sensors
	Actuators
	Configuring the Plant
	Plant output files

	Controller Services
	Controllers
	Configuring the Controller Service
	Controller output files

	Contributing (WIP)
	Code style and standards

	Team
	License
	Indices and tables
	CLEAVE
	cleave package
	Subpackages
	cleave.api package
	Submodules
	cleave.api.cli module
	cleave.api.controller module
	cleave.api.plant module
	cleave.api.util module
	cleave.core package
	Subpackages
	cleave.core.client package
	Submodules
	cleave.core.client.actuator module
	cleave.core.client.control module
	cleave.core.client.physicalsim module
	cleave.core.client.plant module
	cleave.core.client.sensor module
	cleave.core.client.statebase module
	cleave.core.client.timing module
	cleave.core.network package
	Submodules
	cleave.core.network.backend module
	cleave.core.network.client module
	cleave.core.network.protocol module
	Submodules
	cleave.core.config module
	cleave.core.logging module
	cleave.core.recordable module
	cleave.core.util module
	cleave.impl package
	Submodules
	cleave.impl.inverted_pendulum module

	Python Module Index
	Index

